产品展示PRODUCTS

您当前的位置:首页 > 产品展示 > 西门子PLC模块 > 西门子S7-300 > 西门子模拟量模块卡件
西门子模拟量模块卡件
产品时间:2023-12-27
我公司销售部为西门子PLC代理商,公司凭借雄厚的实力,现已与西门子工厂建立成良好的合作关系!价格合理,质量保证,公司优势价格产品有,西门子通讯电缆,PLC,西门子模拟量模块卡件
品牌其他品牌

西门子代理商  西门子一级代理商 西门子中国代理商

西门子模拟量模块卡件  西门子模拟量模块卡件

 S7-300

  一般步骤

  S7-300自动化系统采用模块化设计。它拥有丰富的模块,且这些模块均可以独立地组合使用。

  一个系统包含下列组件:

  CPU:

  不同的 CPU 可用于不同的性能范围,包括具有集成 I/O 和对应功能的 CPU 以及具有集成 PROFIBUS DP、PROFINET 和点对点接口的 CPU。 用于数字量和模拟量输入/输出的信号模块 (SM)。 用于连接总线和点对点连接的通信处理器 (CP)。 用于高速计数、定位(开环/闭环)及 PID 控制的功能模块(FM)。

  根据要求,也可使用下列模块:

  用于将 SIMATIC S7-300 连接到 120/230 V AC 电源的负载电源模块(PS)。 接口模块 (IM),用于多层配置时连接中央控制器 (CC) 和扩展装置 (EU)。

  通过分布式中央控制器 (CC) 和 3 个扩展装置 (EU),SIMATIC S7-300 可以操作多达 32 个模块。所有模块均在外壳中运行,并且无需风扇。 SIPLUS 模块可用于扩展的环境条件:

  适用于 -25 至 +60℃ 的温度范围及高湿度、结露以及有雾的环境条件。防直接日晒、雨淋或水溅,在防护等级为 IP20 机柜内使用时,可直接在汽车或室外建筑使用。不需要空气调节的机柜和 IP65 外壳。

  设计

  简单的结构使得 S7-300 使用灵活且易于维护:

  安装模块:

  只需简单地将模块挂在安装导轨上,转动到位然后锁紧螺钉。 集成的背板总线:

  背板总线集成到模块里。模块通过总线连接器相连,总线连接器插在外壳的背面。 模块采用机械编码,更换极为容易:

  更换模块时,必须拧下模块的固定螺钉。按下闭锁机构,可轻松拔下前连接器。前连接器上的编码装置防止将已接线的连接器错插到其他的模块上。 现场证明可靠的连接:

  对于信号模块,可以使用螺钉型、弹簧型或绝缘刺破型前连接器。 TOP 连接:

  为采用螺钉型接线端子或弹簧型接线端子连接的 1 线 - 3 线连接系统提供预组装接线另外还可直接在信号模块上接线。 规定的安装深度:

  所有的连接和连接器都在模块上的凹槽内,并有前盖保护。因此,所有模块应有明确的安装深度。 无插槽规则:

  信号模块和通信处理器可以不受限制地以任何方式连接。系统可自行组态。

  扩展

  若用户的自动化任务需要 8 个以上的 SM、FM 或 CP 模块插槽时,则可对 S7-300(除 CPU 312 和 CPU 312C 外)进行扩展:

  中央控制器和3个扩展机架多可连接32个模块:

  总共可将 3 个扩展装置(EU)连接到中央控制器(CC)。每个 CC/EU 可以连接八个模块。 通过接口模板连接:

  每个 CC / EU 都有自己的接口模块。在中央控制器上它总是在 CPU 旁边的插槽中,并自动处理与扩展装置的通信。 通过 IM 365 扩展:

  1 个扩展装置远扩展距离为 1 米;电源电压也通过扩展装置提供。 通过 IM 360/361 扩展:

  3 个扩展装置, CC 与 EU 之间以及 EU 与 EU 之间的远距离为 10m。 单独安装:

  对于单独的 CC/EU,也能够以更远的距离安装。两个相邻 CC/EU 或 EU/EU 之间的距离:长达 10m。 灵活的安装选项:

  CC/EU 既可以水平安装,也可以垂直安装。这样可以大限度满足空间要求。

  通信

  S7-300 具有不同的通信接口:

  连接 AS-Interface、PROFIBUS 和 PROFINET/工业以太网总线系统的通信处理器。 用于点到点连接的通信处理器 多点接口 (MPI), 集成在 CPU 中;

  是一种经济有效的方案,可以同时连接编程器/PC、人机界面系统和其它的 SIMATIC S7/C7 自动化系统。

  PROFIBUS DP进行过程通信

  SIMATIC S7-300 通过通信处理器或通过配备集成 PROFIBUS DP 接口的 CPU 连接到 PROFIBUS DP 总线系统。通过带有 PROFIBUS DP 主站/从站接口的 CPU,可构建一个高速的分布式自动化系统,并且使得操作大大简化。

  从用户的角度来看,PROFIBUS DP 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。

  以下设备可作为主站连接:

  SIMATIC S7-300

  (通过带 PROFIBUS DP 接口的 CPU 或 PROFIBUS DP CP) SIMATIC S7-400

  (通过带 PROFIBUS DP 接口的 CPU 或 PROFIBUS DP CP) SIMATIC C7

  (通过带 PROFIBUS DP 接口的 C7 或 PROFIBUS DP CP) SIMATIC S5-115U/H、S5-135U 和 S5-155U/H,带IM 308 SIMATIC 505

  出于性能原因,每条线路上连接的主站不得超过 2 个。

  以下设备可作为从站连接:

  ET 200 分布式 I/O 设备 S7-300,通过 CP 342-5 CPU 313C-2 DP, CPU 314C-2 DP, CPU 314C-2 PN/DP, CPU 315-2 DP, CPU 315-2 PN/DP, CPU 317-2 DP, CPU 317-2 PN/DP and CPU 319-3 PN/DP C7-633/P DP, C7-633 DP, C7-634/P DP, C7-634 DP, C7-626 DP, C7-635, C7-636 现场设备

  虽然带有 STEP 7 的编程器/PC 或 OP 是总线上的主站,但是只使用 MPI 功能,另外通过 PROFIBUS DP 也可部分提供 OP 功能。

  通过 PROFINET IO 进行过程通信

  SIMATIC S7-300 通过通信处理器或通过配备集成 PROFINET 接口的 CPU 连接到 PROFINET IO 总线系统。通过带有 PROFIBUS 接口的 CPU,可构建一个高速的分布式自动化系统,并且使得操作大大简化。

  从用户的角度来看,PROFINET IO 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。

  可将下列设备作为 IO 控制器进行连接:

  SIMATIC S7-300

  (使用配备 PROFINET 接口或 PROFINET CP 的 CPU) SIMATIC ET 200

  (使用配备 PROFINET 接口的 CPU) SIMATIC S7-400

  (使用配备 PROFINET 接口或 PROFINET CP 的 CPU)

  可将下列设备作为 IO 设备进行连接:

  ET 200 分布式 I/O 设备 ET 200S IM151-8 PN/DP CPU, ET 200pro IM154-8 PN/DP CPU SIMATIC S7-300

  (使用配备 PROFINET 接口或 PROFINET CP 的 CPU) 现场设备

  通过 AS-Interface 进行过程通信

  S7-300 所配备的通信处理器 (CP 342-2) 适用于通过 AS-Interface 总线连接现场设备(AS-Interface 从站)。

  更多信息,请参见通信处理器。

  通过 CP 或集成接口(点对点)进行数据通信

  通过 CP 340/CP 341 通信处理器或 CPU 313C-2 PtP 或 CPU 314C-2 PtP 的集成接口,可经济有效地建立点到点连接。有三种物理传输介质支持不同的通信协议:

  20 mA (TTY)(仅 CP 340/CP 341) RS 232C/V.24(仅 CP 340/CP 341) RS 422/RS 485

  可以连接以下设备:

  SIMATIC S7、SIMATIC S5 自动化系统和其他公司的系统 打印机 机器人控制 扫描器,条码阅读器,等

  特殊功能块包括在通信功能手册的供货范围之内。

  使用多点接口 (MPI) 进行数据通信

  MPI(多点接口)是集成在 SIMATIC S7-300 CPU 上的通信接口。它可用于简单的网络任务。

  MPI 可以同时连接多个配有 STEP 7 的编程器/PC、HMI 系统(OP/OS)、S7-300 和 S7-400。 全局数据:

  “全局数据通信”服务可以在联网的 CPU 间周期性地进行数据交换。 一个 S7-300 CPU 可与多达 4 个数据包交换数据,每个数据包含有 22 字节数据,可同时有 16 个 CPU 参与数据交换(使用 STEP 7 V4.x)。

  例如,可以允许一个 CPU 访问另一个 CPU 的输入/输出。只可通过 MPI 接口进行全局数据通信。 内部通信总线(C-bus):

  CPU 的 MPI 直接连接到 S7-300 的 C 总线。因此,可以通过 MPI 从编程器直接找到与 C 总线连接的 FM/CP 模块的地址。 功能强大的通信技术: 多达 32 个 MPI 节点。 使用 SIMATIC S7-300/-400 的 S7 基本通信的每个 CPU 有多个通信接口。 使用编程器/PC、SIMATIC HMI 系统和 SIMATIC S7-300/400 的 S7 通信的每个 CPU 有多个通信接口。 数据传输速率 187.5 kbit/s 或 12 Mbit/s 灵活的组态选项:

  可靠的组件用于建立 MPI 通信: PROFIBUS 和“分布式 I/O”系列的总线电缆、总线连接器和 RS 485 中继器。使用这些组件,可以根据需求实现设计的化调整。例如,任意两个MPI节点之间多可以开启10个中继器,以桥接更大的距离。

查明故障信号。在服务行业,机器学习将会带来革命性的变化。西门子研究人员如今已不再满足于发现医疗诊断系统等昂贵设备出现故障后再去解决,而是要往前跨一大步。西门子美国研究院的Fabian Mörchen博士正在研发知识决策系统领域的学习系统,他说:“我们开发的程序可以有效预测核磁共振成像设备或核医学系统什么时候会发生故障。”这种方法的原理是,很多机器在发生故障前会发出预兆。Mörchen说:“关键是找到这种信号,并让它们可被察觉到。”这种信号包括电流、电压、噪声、震动、气压以及温度等的变化。

机器自带的传感器可以检测出自身的异常情况。在了解如何判断机器是否正常运转后,研究人员和其学习系统使用数据挖掘技术找出异常模式。一旦将一系列模式和某个故障联系起来,Mörchen团队就可以开发出相关算法,来训练计算机程序。这样,程序在处理之前没有见过的数据时也能够识别出这些模式。比如,MRI扫描器的低温氦泄露时,温度和压力只是发生了微乎其微的变化。得益于早期预警算法,西门子医疗的技术人员才盯住了这个问题,在机器出现故障前就修复了制冷系统。如今,在这种软件的帮助下,西门子服务团队不仅仅监视着3,500台MRI扫描仪,还可以进行预防性维护。这一战略使过去三年间的维修成本降低了580万美元。

西门子美国研究院的研究员Ciprian Raileanu开展的一个项目,是这类研究项目的之一。开发的成果被用来监控桥梁。当时,美国交通部正想优化全国境内大约650,000座桥梁的维修工作。Raileanu团队和普林斯顿附近的罗格斯大学及其高级基础设施和交通研究中心联合开发了一种解决方案。

自主学习提高了风电场的发电量,相当于增加了一台风电机组。

Raileanu说:“根据桥梁传感器资料、检测报告、气象资料、桥梁基建图等历史数据和来自警方的事故记录、照片等,系统能够独立判断桥梁的状态。”他还补充道:“我们还从这些纷杂的数据中找到了模式。”在这些模式的基础上,相关算法可了解由于某些因素共同作用可能会导致怎样的后果。例如,如果某座桥梁于1976年建在强降雨地区,并使用了梁铁,那么,30年后桥墩很有可能就会出现裂缝。美国交通部自2008年以来就一直在使用这种桥梁监视程序。

英国和俄罗斯的铁路公司用于监视其列车车队的全新系统也以该程序为蓝本。这种学习软件使用的数据一部分来自火车各种子系统上的传感器,比如监视刹车和车门的传感器,另一部分则来自列车时刻表和故障报告。这种被称为列车远程服务桌面(RRSD)的系统综合所有数据,计算出某个时刻每辆列车的位置,判断是否需要对其进行维护等。目前,RRSD正在监视175辆列车——西门子不仅提供软件,还提供自动化部件。

使用神经网络,学习系统可以预测轮机的运行标准及其排放量(如需了解更多信息,请参阅第54页)。

驾驭复杂数据。学习软件的另一个主要应用领域是燃气轮机——在这方面,学习软件的基础主要是神经网络。这种系统能在数秒之间作出关于排放量和轮机运转情况的预测。轮机受无数因素之间复杂关系的影响,研究人员一般只能通过统计手段去评估,因为很多值都只能粗略地估算出来。传统的数学公式需要精确的数字,因此在这种研究中不是很实用。但想要使轮机达到长的使用寿命,实现的运转状态,同时将其排放量降到低,就必须精确地估算并预测数千种设置的影响。

为此,位于慕尼黑的西门子智能系统与控制技术领域(GTF)部门的Volkmar Sterzing及其CT团队开发了一种可以实现以上功能的新方法。使用所谓的递归神经网络,研究人员可以描绘燃气轮机的整个运转过程,并准确预测其产出。Sterzing解释说:“过去,我们只能了解到这些过程在某一时刻的状态。而现在,使用这个新方法,我们可以掌握在这个特定时刻之前及之后的运行情况。”Sterzing表示,利用这种方法,研究人员不仅可以查明过去发生了什么,还可以预见未来会发生什么。这种动态的描绘可以确认其中的变化,充分利用有利的变化,同时弱化可能产生负面影响的变化,并相应地调整维保计划。

未来,个人能源代理将使用装有学习软件的专业电表箱(左图)来操作顾客和电力公司之间的电力交易。

CT研究人员已经将他们从燃气轮机中学到的知识应用在相关领域内,例如优化风电机组及整个风电场。作为热心航海比赛船员的一份子,Sterzing知道在比赛中每时每刻都需要关注波浪、风速和对手的船只,这样才能决定驾驭船只的方式。否则,如果无法预测未来的变化,就不能规划合适的路线。在这种办法的启发下,他为风电机组发明了一种软件系统,这种系统的基础是能够测量大约十种因素的传感器,包括风速、乱流度、温度和气压。算法将这些数据和风电场发电量联系起来,这样软件就能够从数以千计的关系中学习并学会如何在新情况下应用已有的知识。

西门子研究人员现在正在测试该系统。

随着对不同情况的学习,系统越来越擅长独立预测,知道哪种情况下,旋转叶片的入射角或发电机速度快慢的改变,使得风电机组能够从风中获得大的产出。这种方法可以将风电机组的产出提高0.5个百分点。听起来似乎不多,但是对一个大型风电场而言就是很显著的效果。在过去的六个月里,瑞典Lillgrund风电场进行的实验已经表明,正是得益于从自己的行为中独立学习的能力,即所谓的自主学习,风电场提高了发电量,这相当于额外添加了一台风电机组所生产的电量。

从声音中学习——高效节能

将电弧炉中的铁块熔炼成钢板会产生大量噪声。重量各异的铁块,有的甚至像汽车那么大,在三个强大的电弧下熔化时来回滑动。虽然电弧的温度高达一万摄氏度,有时也不能将熔化的铁块焊接起来,而将能量消耗到炉壁上。熔炉产生的噪声震耳欲聋。三相交流电电极的电弧产生大约120分贝的噪声,比喷气式飞机的噪声都大。Detlef Rieger是慕尼黑西门子中央研究院的非破坏性试验技术领域(GTF)部门的项目经理,Thomas Matschullat就职于爱尔兰根的冶金技术部门。正是这样巨大的噪声使两位科学家不得不认真思考这一问题。两人想知道该如何监视和控制熔炼过程,以减少能源的浪费。

他们在熔炉外壁挂上传感器,这样就可以测出熔炉内部产生的声波。除此之外,他们还持续不断地监视电极产生的电流。Rieger说:“把电极数据和声波测量结果结合起来。我们的算法可以计算出电弧和炉壁之间产生的是哪种声音振荡。通过这个信息,我们可以推断出熔炉内部每时每刻的情况。”在熔化的初阶段,系统已经掌握足够的信息可以确定熔炉内部各个铁块的位置,从而判断出单个电极的输出是增加还是减少。在熔炼的第二阶段,确保铁块中碎屑异物形成的矿渣尽可能均匀地分布在熔化的金属表层,这很关键。为此,将煤灰吹入熔炉中,在矿渣上形成一层一氧化碳泡沫。这一层泡沫保护了电弧和熔化的金属,避免炉壁的温度过高。这样就减少了能源消耗。软件不断地通过解读声波数据来测量含有泡沫的矿渣是否足够厚,分布是否均匀,因此该过程被命名为“IMELT Foaming Slag Manager(IMELT泡沫煤渣管理器)。”德国的两家炼钢厂和白俄罗斯的一家炼钢厂都在使用这个系统,并成功地将能耗降低了2.3%。Rieger说:“例如,按照100吨钢材的成本计算,差不多相当于每小时节省了920 度电。”而且,炼钢厂每年的煤炭消耗量降低了25%,二氧化碳排放量减少了12,000吨。

 

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
在线客服 联系方式

服务热线

86-132-17430013